Center for Computational and Theoretical Biology

    Shared Workspaces

    We provide workplaces for MSc/PhD students and Postdocs who want to spend some time at the CCTB while working on their thesis, e.g. to analyze and interpret genomic data, perform image analysis, or develop theoretical models. We offer an open and friendly environment where you can discuss your computational problems, and we provide access to our high-performance computing resources. If you are interested, please contact one of the group leaders.

    Machines

    The CCTB runs its own high-performance compute cluster with 7 compute nodes and 360 cores, running Linux and the SLURM scheduler, connected to a 140 TB storage system. This is  the configuration of the individual nodes:

    • jupiter: Intel Xeon E7 4870 @2.4GHz, 80 cores, 1024 GB RAM
    • saturn1: Intel Xeon E7 4850 @2.0 GHz, 80 cores, 512 GB RAM
    • saturn2: Intel Xeon E7 4870 @2.4 GHz, 80 cores, 512 GB RAM
    • 3x uranus[1-3]: AMD Opteron 6274 @2.2 GHz, 32 cores, 192 GB RAM
    • neptun1: AMD Opteron 6172 @2.1 GHz, 24 cores, 192 GB RAM

    The GPU node saturn2 additionally includes two graphics processing units for GPGPU computing, one Nvidia Pascal GP104 GPU (8 GB RAM, 2560 cores) and one Nvidia Pascal GP107 GPU (4 GB RAM, 768 cores), both running under CUDA 8.0.

    Computer Pool

    For courses and tutorials, the CCTB has a computer pool with 14 Raspberry Pi thin clients that are connected to a terminal server with 16 cores and 128 GB RAM using X2GO and Linux. It is even possible to use the HPC cluster from the thin clients!

    Software / Expertise

    We offer expertise in a large variety of open-source tools and scientific software, from genomics, statistics, modeling to image analysis and machine learning. We also have experience in statistics, data science and programming (R, Julia, Python etc.). If you want to learn these tools or want to collaborate, please talk to us!